

This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher *Taylor & Francis*
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Synthetic Inorganic Ion-Exchangers. XVI. Thin-Layer Chromatography of Metal Ions on Zirconium Tungstate: Quantitative Separation of Hg(II) from Several Other Metal Ions and from Mixtures

Anil K. De^a, Bata K. Pal^a

^a Department OF CHEMISTRY, VISVA-BHARATI, SANTINIKETAN, WEST BENGAL, INDIA

To cite this Article De, Anil K. and Pal, Bata K.(1980) 'Synthetic Inorganic Ion-Exchangers. XVI. Thin-Layer Chromatography of Metal Ions on Zirconium Tungstate: Quantitative Separation of Hg(II) from Several Other Metal Ions and from Mixtures', *Separation Science and Technology*, 15: 5, 1271 – 1275

To link to this Article: DOI: 10.1080/01496398008066972

URL: <http://dx.doi.org/10.1080/01496398008066972>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NOTE

Synthetic Inorganic Ion-Exchangers. XVI. Thin-Layer Chromatography of Metal Ions on Zirconium Tungstate: Quantitative Separation of Hg(II) from Several Other Metal Ions and from Mixtures

ANIL K. DE and BATA K. PAL

DEPARTMENT OF CHEMISTRY
VISVA-BHARATI, SANTINIKETAN
WEST BENGAL 731235, INDIA

Abstract

Thin-layer chromatography of 23 metal ions in 10 aqueous and mixed solvent systems has been performed on zirconium tungstate ion-exchange material. Several important binary and ternary separations have been achieved. Quantitative separation of Hg(II) from Pb^{2+} , Zn^{2+} , Cd^{2+} , Bi^{3+} , Co^{2+} , and mixtures has been achieved using 1,4-dioxane as solvent.

INTRODUCTION

In continuation of our work on TLC studies on thorium phosphate, tungstate, and antimonate (1-3), in this paper we report systematic investigations on TLC behavior of several metal ions on binder-free thin-layer plates of zirconium tungstate. Based on studies in HNO_3 , butanol, dioxane, isobutyl methyl ketone-tetrahydrofuran- HNO_3 , some important binary and ternary separations have been achieved. A quantitative method for the separation of Hg(II) from numerous metal ions has been devised.

EXPERIMENTAL

Apparatus

Zirconium tungstate thin layers were prepared on glass plates (20×3 cm) which were subsequently developed in several solvent systems in

glass jars. For spectrophotometric studies, EC Model GS 866 B India was used.

Reagents

Chemicals and solvents used in this work were of analytical grade (B.D.H./E. Merck/Pfizer).

Preparation of Ion-Exchange Materials on Thin-Layer Plates

The ion-exchanger, zirconium tungstate (Zr: W = 1: 1.12) in the H⁺ form, was prepared according to the procedure described earlier (4). Each material was then powdered separately and slurried with a little demineralized water in a mortar. It was then spread over the glass plate with the help of an applicator. Almost uniformly thin layers (~0.1 mm thickness) were obtained. The plates were dried and ready for use. These plates gave reproducible *R_f* values.

Test Solutions and Detection Reagents

The test solutions, in general, had a metal concentration of 4 mg/mL (chloride/nitrate/sulfate). Standard spot test reagents were used for detection (5).

Solvent Systems

1. 0.1 *M* HNO₃
2. 0.01 *M* HNO₃
3. 0.001 *M* HNO₃
4. 0.0001 *M* HNO₃
5. Butanol:6 *M* HNO₃ (1:1)
6. Butanol
7. Dioxane: 0.1 *M* HNO₃ (2:8)
8. Dioxane: 0.1 *M* HNO₃ (8:2)
9. Dioxane
10. IBMK:THF:1 *M* HNO₃ (1:8:1)

Procedure

For qualitative studies, one or two drops of the test solutions were placed on plates with thin glass capillaries. After drying the spots, development was made in different solvent systems. The ascent was fixed as 11 cm

in HNO_3 and the dioxane- HNO_3 mixture, and for other cases the ascent was fixed at 8 cm. R_T and R_L values were measured after development of the spots (Table 1).

For quantitative work, a stock solution of mercuric nitrate (6500 $\mu\text{g/mL}$) was prepared and standardized (6). Synthetic mixtures of Hg(II) and other ions were applied with the help of a micropipette on the line of application. The plates were developed in 1,4-dioxane solution. A pilot plate was run simultaneously to locate the position of Hg(II) by detecting it with dithizone. The area corresponding to Hg(II) was scratched (7) from the working plate. The mass was eluted with 1 M H_2SO_4 and filtered. The filtrate was then diluted with 0.05 M H_2SO_4 , and the amount of Hg(II) was measured spectrophotometrically by the dithizone method (8) (Table 2).

RESULTS AND DISCUSSION

The results of TLC studies reveal that most of the metal ions have appreciable R_F values in HNO_3 , BuOH-HNO_3 , dioxane- HNO_3 , and IBMK-THF- HNO_3 mixtures. The general trend is decrease in R_F with increasing pH of the solution, which is the characteristic feature of an ion-exchange process. In pure butanol all the metal ions except Sb(V) are retained in the base line, which permits several binary separations of Sb(V) from other metal ions. Table 1 summarizes some important binary and ternary separations that are actually achieved with different solvents. The

TABLE 1

Binary and Ternary Separations Achieved on Zirconium Tungstate Thin Layer
(the numbers in parentheses gives the $R_T - R_L$ values)

1. *Nitric acid 0.01 or 0.1 M*: Time, 1.5 hr; Ag^+ , Tl^+ , Pb^{2+} , $\text{Bi}^{3+}(0.0)$ from Fe^{3+} (0.55–0.70), Au^{3+} (0.5–0.6), Cd^{2+} (0.7–0.8), Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} (0.75–0.95)
2. *1-Butanol*: Time, 8 hr; Au^{3+} , Zn^{2+} , Cd^{2+} , Tl^+ , Bi^{3+} , $\text{UO}^{2+}(0.0)$ from Sb^{2+} (0.8–0.95)
3. *1,4-Dioxane*: Time, 6 hr; Cu^{2+} , Zn^{2+} , Cd^{2+} , As^{3+} , $\text{Pb}^{2+}(0.0)$ from Hg^{2+} , Sb^{5+} (0.95–1.00)
4. *1,4-Dioxane: 0.1 M HNO₃ (8:2)*: Time, 3 hr; $\text{Ag}^+(0.0)$ from Ni^{2+} (0.45–0.65), Au^{3+} (0.56–0.65)– Hg^{2+} (0.70–0.85); $\text{Pb}^{2+}(0.0)$ from Cd^{2+} (0.30–0.40)– Hg^{2+} (0.70–0.85)
5. *1,4-Dioxane: 0.1 M HNO₃ (2:8)*: Time, 2.0 hr; $\text{Ag}^+(0.0)$ from Ni^{2+} (0.70–0.85); $\text{Bi}^{3+}(0.0–0.1)$ from Hg^{2+} (0.50–0.60); Au^{3+} (0.35–0.50) from Mn^{2+} (0.70–0.80); $\text{Pb}^{2+}(0.0)$ from Au^{3+} (0.40–0.50)– Cu^{2+} (0.70–0.85)
6. *IBMK:THF: 1 M HNO₃ (1:8:1)*: Time, 8 hr; UO^{2+} (0.45–0.50) from Au^{3+} (0.95–1.00); $\text{As}^{3+}(0.0)$ from Bi^{3+} (0.35–0.50), Bi^{3+} (0.35–0.50)– Sb^{5+} (0.90–0.95); $\text{Pb}^{2+}(0.0)$ from Bi^{3+} (0.30–0.40)– Cu^{2+} (0.70–0.85); Ni^{2+} (0.20–0.30) from Mn^{2+} (0.65–0.75)– Co^{2+} (0.80–0.85); $\text{Rh}^{3+}(0.0)$ from Pd^{2+} (0.60–0.80)– Au^{3+} (0.90–0.95)

TABLE 2
Quantitative Separation of Hg^{2+} from the Mixture of Other Metal Ions on
Zirconium Tungstate Thin Layer

Mixture taken	Amount of other metal ions applied (μg)	Amount of Hg^{2+} (μg)		
		Added	Found	% error
—	—	6.5	6.75	+3.84
—	—	13.0	12.50	-3.85
1. $Hg^{2+}-Pb^{2+}$	$Pb^{2+}(5.1)$	6.5	7.00	+7.75
2. $Hg^{2+}-Pb^{2+}$	$Pb^{2+}(10.2)$	13.0	13.00	—
3. $Hg^{2+}-Zn^{2+}$	$Zn^{2+}(6.57)$	6.5	6.37	-2.0
4. $Hg^{2+}-Zn^{2+}$	$Zn^{2+}(13.14)$	13.0	13.00	—
5. $Hg^{2+}-Cd^{2+}$	$Cd^{2+}(5.3)$	6.5	6.75	+3.84
6. $Hg^{2+}-Cd^{2+}$	$Cd^{2+}(10.6)$	13.0	12.25	-5.77
7. $Hg^{2+}-Co^{2+}$	$Co^{2+}(10.2)$	13.0	12.75	-1.95
8. $Hg^{2+}-Cu^{2+}$	$Cu^{2+}(5.94)$	6.5	6.75	+3.84
9. $Hg^{2+}-Cu^{2+}$	$Cu^{2+}(11.88)$	13.0	12.25	-5.77
10. $Hg^{2+}-Bi^{3+}$	$Bi^{3+}(11.35)$	13.0	12.50	-3.85
11. $Hg^{2+}-Zn^{2+}-Cd^{2+}$	$Zn^{2+}(3.24)-Cd^{2+}(2.65)$	6.5	6.25	-3.84
12. $Hg^{2+}-Zn^{2+}-Cd^{2+}$	$Zn^{2+}(6.48)-Cd^{2+}(5.3)$	13.0	13.37	+2.8
13. $Hg^{2+}-Zn^{2+}-Cd^{2+}-$ $Cu^{2+}-Bi^{3+}$	$Zn^{2+}(1.62)-Cd^{2+}(1.32)-$ $Cu^{2+}(1.48)-Bi^{3+}(1.42)$	6.5	7.0	+7.7
14. $Hg^{2+}-Zn^{2+}-Cd^{2+}-$ $Cu^{2+}-Bi^{3+}$	$Zn^{2+}(3.24)-Cd^{2+}(2.64)-$ $Cu^{2+}(2.96)-Bi^{3+}(2.84)$	13.0	12.15	-6.54

noteworthy separations are $Ag-Cu-Au$, $Pb-Cd$, $Pb-Cu$, $Bi-Fe$, $Zn-Hg$, $Tl-Pb-Cu$, $As-Pb-Bi$, $Tl-Pb-Hg$, $As-Sb-Bi$, $Ni-Mn-Co$, $Rh-Pd-Au$, $Ru-Au$, and $Ag-Au-Hg$.

Acknowledgment

B.K.P. is grateful to CSIR for the award of a Junior Research Fellowship.

REFERENCES

1. A. K. De, R. P. S. Rajput, S. K. Das, and N. D. Chowdhury, *J. Liquid Chromatogr.*, 2, 117 (1979).
2. A. K. De and B. K. Pal, *Ibid.*, Communicated.
3. A. K. De, R. P. S. Rajput, and S. K. Das, *Sep. Sci. Technol.*, 14, 735 (1979).
4. A. K. De and N. D. Chowdhury, *Chromatographia*, In Press.
5. F. Feigl, *Spot Test in Inorganic Analysis*, 5th ed., Elsevier, Amsterdam, 1958.
6. A. I. Vogel, *Quantitative Inorganic Analysis*, 3rd ed., Longmans, London, 1961.
7. E. S. Shellard (ed.), *Quantitative Paper and Thin-Layer Chromatography*, Academic, New York, 1968.

8. E. B. Sandell, *Colorimetric Determination of Traces of Metals*, 3rd ed., Interscience, New York, 1959, p. 502.

Received by editor September 25, 1979

Note Added in Proof. Table 2 shows the quantitative separation of Hg(II) from various mixtures using 1,4-dioxane as the solvent.